
J .  Fluid Mech. (1976), vol. 76, part 3, p p .  417-432 

Printed in Great Britain 
417 

Viscous eddies near a 90" and a 45" corner in flow 
through a curved tube of triangular cross-section 

By W. M. COLLINS A N D  S. C. R. DENNIS 
Department of Applied Mathematics, University of 

Western Ontario, London, Canada 

(Received 14 August 1975 and in revised form 17 May 1976) 

A numerical calculation is presented for the slow flow of a viscous fluid in a 
region bounded by a right-angled isosceles triangle. The particular flow con- 
sidered is the secondary flow generated in the plane of a cross-section by the 
primary axial flow, under a constant pressure gradient, through a slightly curved 
tube of triangular cross-section. The flow is assumed to be at small Dean number 
so that the stream function of the secondary flow satisfies the biharmonic 
equation. The sequence of eddies of decreasing size and intensity first identified 
by Moffatt ( 1 9 6 4 ~ )  is observed in each of the corners. Numerical details of a 
number of these eddies are given and their properties are found to be in excellent 
agreement with the theory. 

1. Introduction 
A paper by Moffatt (1964a) has considered in detail the structure of the two- 

dimensional flow of a viscous fluid in the region near a sharp corner. Moffatt 
studied a number of cases in which, near enough to the corner, the Stokes 
approximation is valid and the stream function +(r,  6) satisfies the biharmonic 
equation V4+ = 0, where ( r ,  0) are polar co-ordinates with origin at the corner. 
In  essence these cases merely give rise to different boundary conditions governing 
the flow, and the main object of the study was to show that a local solution of the 
biharmonic equation can be obtained which predicts that an infinite sequence 
of eddies of decreasing size will occur in the vicinity of the corner in all cases 
when the angle between the plane walls is less than a certain critical value, whose 
magnitude is about 146". 

The local solution of the biharmonic equation is of the form 

w, 6) = rAfA4 (1) 

and the eddies occur only when the admissible values of h are complex. Rayleigh 
(1920) showed that no solution consisting of terms of type (1) in which the 
admissible values of h are integers can be found which satisfies four boundary 
conditions of homogeneous type, for example 

@ = a + p O  = 0 when O = +a, (2) 

corresponding to zero velocity on two walls inclined a t  an angle 2a. Dean & 
Montagnon (1949) showed that h is necessarily complex for values of 2a less than 
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about 146", but it was not until the paper of Moffatt (1964a) that this wag 
interpreted as implying the existence of eddies in the corner. 

The solution considered by Moffatt is a similarity solution of type (1)  valid 
only locally in the corner, and the motion in the corner must be driven in some 
manner. Moffatt cites several possible categories of solutions described by (1). In  
one of these the boundary conditions are inhomogeneous and the solutions 
involve positive integer values of A. A case of this type, in which one wall moves 
parallel to itself with constant velocity, has been described by Taylor (1960). 
No eddies occur in such cases. I n  a second category of solutions the motion in 
the corner is driven by stirring of the fluid at  large enough distances from the 
corner. Here the boundary conditions are homogeneous and of type (2). Eddies 
occur if a is small enough, and the real part of A is positive. An example of this 
type in which the motion is driven by inhomogeneous boundary conditions a t  
some distance from the corner has been given by Moffatt (1964b). A third cate- 
gory of solutions considered by Moffatt ( 1 9 6 4 ~ )  is that in which ( 1 )  describes the 
flow at large distances from the corner which is driven by a disturbance near the 
corner. The boundary conditions are again given by (2). Eddies occur also in this 
case for angles in general less than about 146" but the real part of A is negative. 

In  the cases considered by Moffatt (1964u, b )  the governing equation is the 
homogeneous biharmonic equation V4$ = 0. I n  the present paper we shall con- 
sider a somewhat different case where the flow is the two-dimensional secondary 
flow which occurs in the plane of a cross-section of a slightly curved tube in 
which the primary flow is the axial flow through the tube maintained by a con- 
stant pressure gradient. This type of problem has been the subject of many 
studies, but the early work was done for a tube of circular cross-sedion by 
Dean (1927, 1928). He showed that for small curvature of the tube it is possible 
to formulate an analysis for small perturbations from the basic Poiseuille flow 
when the tube is straight. The first-order perturbation for the stream function of 
the secondary flow satisfies an inhomogeneous biharmonic equation with a 
forcing term on the right-hand side due to the primary flow, which drives the 
secondary motion. When the cross-section contains a sharp corner, the local 
solution near the corner will consist of a forced term satisfying the inhomogeneous 
biharmonic equation together with a suitable combination of solutions of the 
homogeneous biharmonic equation of the type (1) .  If the latter terms dominate 
the solution, eddies may be seen. 

The present investigation arose in the course of a study of flow in a curved 
tube whose cross-section is a right-angled isosceles triangle. The appearance of 
vortices was first observed in the secondary flow in the 45" corners of the cross- 
section and a detailed study of all the corner regions was subsequently made by 
refining the grid size of the numerical scheme. I n  this way it was possible to 
observe thirteen of the vortices in the 45" corner and six pairs of vortices in the 
90" corner. Corner vortices of Moffatt's type have previously been observed in 
numerical calculations by Burggraf (1966) and by Pan & Acrivos (1967). In  the 
latter paper a detailed study was made of three of the vortices formed in a 90" 
corner and their properties were found to compare favourably with the theory of 
Moffatt ( 1 9 6 4 ~ ) .  The flow in the corner was in principle similar to that found in 
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each of the 45" corners in the present case in that it was dominated by the term 
of type (1) with the eigenvalue h = A, having the smallest possible positive real 
part for the appropriate angle 2a. The stream function $(r, 8) is symmetrical 
about the bisector of the corner angle in this case and the corresponding flow 
is antisymmetrical about this line. 

In  the present case, however, the flow in the 90" corner is required by the 
conditions of the problem to be symmetrical about the bisector of the corner 
angle. Thus the term of type (1) which would dominate the solution in the general 
case is specifically excluded and the dominant term is that with the eigenvalue 
h = A, having the smallest positive real part of all eigenvalues associated with 
terms for which $(r, 6 )  is antisymmetrical about the bisector. The vortices in the 
corner occur in symmetrical pairs in this case. Their intensity decays much more 
rapidly than in the general case and they are more widely separated. They can 
occur (Moffatt 1964a) for a rather wider range of angles, 2a < 156", approxi- 
mately, than that in the general case. There are no published details of calcula- 
tions illustrating this case of symmetrical flow about the centre-line of a corner. 
The present results verify the theory for this case as far as it is possible to do so 
and also illustrate a case where the flow in all the corners is driven by the in- 
homogeneity of the biharmonic equation. 

2. Equations and boundary conditions 
A typical triangular cross-section of a curved tube is shown in figure 1, where 

C is the centre of the circle in which the tube lies. The angle a t  the vertex 0 is 
2p = 90" and the cross-section is symmetrical about the axis CN,  with CO = L 
and ON = a. It is assumed that the ratio a / L  < I and that the motion in the 
tube is maintained by a constant mean pressure gradient ap'/a(Lq5) = - (2, where 
p' is the pressure and q5 the angle which the plane of a given cross-section makes 
with a fixed cross-section, as shown in figure 1. The problem can be described 
in terms of the co-ordinate system (x', y', $), where the origin is taken at  the 
vertex 0. 

The equabions of motion have been given by Dean (1928) under the assumption 
that the velocity components (u', u', w') in the directions of increase of the 
co-ordinates (x', y', q5) are independent of q5. If x' = ax, y' = ay and 1' is the 
coefficient of kinematic viscosity, we may write 

where $(x, y) is the diniensionless stream function of the secondary flow in the 
cross-section. The equations of motion for $(x, y) and w(x, y) are 

where 
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I I 

FIGURE I .  Co-ordinate system and geometry of cross-section. 

The constant D is the Dean number, defined by D = Ga3(2a/L)4/pv2, where p 
is the density. 

If the triangular boundary in figure 1 is denoted by A, the boundary conditions 
are that 

from which it also follows that we may take 

w = 0, a$/ax = a$/ay = o on A, (6) 

$ = O  on A. (7) 

In view of these conditions, if we put D = 0 in (4) it is found that w(z, y) = 0 
and $(x, y) = 0 for all values of x and y within A. Dean (1928) showed that for 
small D a solution of (4) and ( 5 )  can be developed as a series in powers of D and 
proceeded to determine several terms in the series for a tube of circular cross- 
section. In  the present case we shall consider only the first term of the expansion 
for small D by putting 

w D W ( G  Y), $ D2Y(z, y). (8) 

V 2 W + l =  0, (9) 

(10) 

Then from (4) and ( 5 )  it is found that 

V ~ Y P  + wa w/ay = 0. 

The functions W and Y obviously satisfy the same boundary conditions ( 6 )  
and (7) as w and $, and numerical solutions of (9) and (10) satisfying these 
conditions must be found. If the solution of (9) with W = 0 on A is found and 
introduced into (lo), the term FYa W/ay acts as a forcing term which drives the 
secondary flow. If we take local polar co-ordinates (Y, 8)  with origin at any of the 
corners of the cross-section it may be shown that the required solution of (9) 
has W = O(+) as Y + O  and then that the particular solution of (10) due to the 
forcing term WaW/ay gives Y = O(r7)  as r+O, regardless of the angle of the 
corner. The theory of Moffatt (1964a) then shows that the complete solution for 
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Y near each of the corners is dominated by the most significant term of the 
complementary function for Y, which satisfies V4Y = 0. Thus vortices may be 
expected in each of the corners, although the dominance of the complementary 
function is not great and it is necessary to obtain a very refined numerical 
solution, particularly near the 90" corner. It may be noted that vortices have 
previously been observed in other numerical investigations of flow through 
curved tubes, e.g. by Cheng & Akiyama (1970) and Hocking (unpublished) for a 
rectangular cross-section, but they do not appear to be corner vortices of Moffatt's 

In  the numerical solution of (10) it is convenient to express the problem as the 
type. 

pair of simultaneous equations 

V ~ Y  = - Q, v w  = w a wlay. (11), (12) 

Because of the symmetry of the flow about the x axis, it  is necessary to solve 
(9), (1 1) and (12) only in the upper half of the triangular region with the symmetry 
conditions 

W(x, -3) = W(x,y), w x ,  -y) = -Wx,y) ,  Q(X, -y) = - Q(x,y) (13a-c) 

and, as a consequence of the last two of these conditions, 

Y = C? = 0 when y = 0. (14) 

3. Numerical solutions 
The equations were solved numerically by covering the triangular region with 

a square grid o f  side h, with x = 1 and y = 0 as grid lines. By suitable choice of h 
the grid could be made to fit exactly into the region, giving a series of uniformly 
spaced grid points on y = f x. Solutions were obtained over the upper half of the 
triangle only, making use of (13) and (14). The solution procedure is quite 
standard and we shall describe only certain features of it in detail. The Southwell 
notation for grid points is adopted (Smith 1965, p. 142), in which function values 
at a typical set of grid points (xo, yo), (so+h, yo), (xo, yo+h), (2,-h, yo) and 
(xo, yo - h) are given the subscripts 0, 1 , 2 , 3  and 4 respectively. 

Equation (9) is approximated at each typical grid point by the finite-difference 
equation 

w 1 + ~ + w 3 + ~ - 4 W o + h 2  = 0. (15) 

The solution of this set of equations is required at  internal grid points with 
W = 0 on y = x and x = 1 and with the symmetry condition W, = W, when 
(xo, yo) lies on y = 0, the latter condition corresponding to (13a). 

The solution was carried out by the standard successive over-relaxation 
procedure and needs no further description. The same procedure was used in an 
overall iterative sequence to solve the sets of finite-difference equations 

Y, + Y, + Y3 + Y4- 4Y0 +hW0 = 0, 

Ql+ !4+ Q, + Q d  - 4Q0- ihWo(W,- W4) = 0, 

(16) 

(17) 
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which were used to approximate (1 1) and (12) a t  a typical grid point. The boun- 
dary conditions for (16) are that Y = 0 on all of y = x, y = 0 and x = 1. For 
(17) the condition st = 0 holds on y = 0, but it is necessary to calculate a boundary 
condition for 0 on both y = x and x = 1.  Here we must use the conditions for 9 
given in (6), which hold equally for Y. Some care is necessary in this calculation 
in the present problem. 

A standard procedure on the boundary y 5 x would be to use the finite- 
difference formulae 

2 h ( a ~ / a x ) ,  = y1-y3+o(h3), z h ( a ~ / a y ) ~  = y 2 - y 4 + 0 ( h 3 )  (i8a,b) 

and then to replace each left side by zero and neglect the O(h3) term on each right 
side. The approximations thus obtained are then used to eliminate from (16) 
the terms Y2 and Y3, which are outside the triangle. Since also Yo = 0 on the 
boundary we obtain the formula 

Qo = - 2(Yl + Y4)/hz on y = x, (19) 

which may be used to calculate boundary values of !2 from internal values of Y.  
By a similar procedure using only (18a) in conjunction with (16), we obtain 

Q, = - 2Y3/h2 on x = 1.  (20) 

There is, however, a deficiency in accuracy in both of these approximations. 
The elimination of the external terms in Y from (16) using (18) introduces an 
O(h3) error into (16), whereas the general truncation error on the right sides of all 
of (15)-(17) is O(h4).  Thus the leading error term on the right sides of (19) and (20) 
is O(h),  and whereas this may not be important in many problems it is important 
here in the neighbourhood of the corner vortices, where a good approximation is 
needed because of the rapid variation of Y. 

The boundary approximations (19) and (20) can be improved following the 
method proposed by Woods (1954). The leading error terms in (1 8a, b )  can be 
written as - &h3(a3Y/ax3), and - &h3(a3Y/ay3),, respectively, on the right side of 
each equation. If we now include these terms and use the governing equation 
(11)  and then eliminate the terms Y2 and Y3 from (16) we obtain the approxi- 
mation 

in which the leading error term now consists only of the O(h4) terms already 
present in (16). The derivatives are now expressed in terms of suitable differences, 
which leads finally to the formula 

no = - (2Y1 + 2Y4 + y8) /h2  - $(a, I- Q 4 )  on y = r, (21) 

where Y8 = Y ( x o  + h, yo - h)  in terms of the Southwell notation. By means of a 
similar procedure on x = 1, making use of only (18a), we obtain 

Q0 = - 3Y3/h2- &a3 on x = 1. ( 2 2 )  

Equations (21) and (22) now both have a leading truncation error O(h2).  The 
effect of these improved boundary approximations on the solutions was st'udied 
in detail by obtaining first approximations using (19) and (20) and then correcting 
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these approximate solutions using (21) and (22). The overall change in the 
solutions was found to be small, but significant in the region of the corner vortices. 

The sets of equations (16) and (17) are each solved by the successive over- 
relaxation procedure at  all internal points of the upper half of the triangle, with 
boundary conditions that are either known a priori or calculated from time to 
time from (21) and (22) in an overall sequence of iterations. The procedure is 
very similar to that described by Collins & Dennis (1975) in the case of flow 
through a curved tube of circular cross-section. As was the case in those calcula- 
tions, it is necessary to introduce an averaging process for the calculation of 
each new set of values of Q on the boundaries from (21) and (22). Thus for (22), 
for example, a new set of boundary values QJm+l) is calculated from the formula 

QJ"+U = - w { 3 Y $ m ) / h 2 - ~ ~ $ m ) } + ( 1 - w ) Q J ~ )  on x = I ,  (23) 

where the superscript m refers to the most recently available values of the various 
quantities on the right at  the time the new calculation is made. The parameter 
.w is chosen empirically. The value w = 0.05 was found to be satisfactory in all 
cases. A similar formula corresponding to (21) is available, and the same value 
w = 0-05 was used. 

The overall sequence of iterations for solving (16) and (17) together with the 
calculation of new boundary conditions from (23) and the corresponding counter- 
part of (21) was repeated until convergence was achieved, measured by the 
criterion 

where F is some prescribed tolerance. When (24) is satisfied it is found that the 
function Q(s, y) has converged to its limiting value to the same degree of tolerance. 
The solution Y(s, y) of (11) has then also converged to  a suitable limit at all 
internal grid points. Finally, the value of the relaxation factor (see Smith 1965, 
pp. 149-150) used in the iterative solution of each of the sets of finite-difference 
equations (15)-( 17) was 1.6 in every case. 

/QJm+l)- QJm)I < F at all boundary points, (24) 

4. Results 
Numerical solutions were obtained over the complete upper half of the tri- 

angular region for the three grid sizes h = g5, and +c. The three approxi- 
mations were then compared in order to estimate their approach to the true 
solution with decreasing grid size. It was found from this estimation that every- 
where except in the local regions near the corners the approximation obtained 
with h = & had almost certainly approached the true solution for each of the 
three functions W ,  Y? and Q to about four significant figures. In  each of the 
numerical approximations the value of F taken in (24) is not very relevant because 
the iterations were allowed to continue until each solution had approached a 
limit to well within the four significant figure tolerance required in estimating 
the approach to the true solution with decreasing h. It was found that the appear- 
ance of at  least one vortex in corner A (figure I)  could be detected in each of 
these three solutions, but that none had thus far appeared in corner 0. 

The region near corner A was now magnified as follows. Since the h = & 
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solution is correct to approximately four figures on the whole of the line y = 4, 
this was taken as a new boundary and a new solution was obtained with grid 
size h = & in the triangular region between y = 8, y = x and x = 1. Boundary 
values of the three functions W ,  'I! and L2 on y = were taken from the h = 2s 
solution, the intermediate values necessary for the finer-grid solution being 
obtained by a very accurate interpolation procedure. Some check could then be 
obtained by comparing the h = &5 and h = solutions, particularly at grid 
points far from the newly imposed boundary y = 4. The agreement was found to 
be good everywhere except very near the corner at y = 1. Thus it was now 
possible to take the line y = 3 as a new boundary and obtain a new solut,ion with 
h = & in the triangular region bounded by the lines y = 3, y = x and x = 1, 
using the h = & solution with interpolated values to provide boundary con- 
ditions on y = $. This procedure of taking a new boundary parallel to the x axis 
and halfway between the previous boundary parallel to this direction and the 
line y = 1 was then repeated numerous times until eventually the grid size of the 
solution near corner A was reduced to h = 1/41943040. A similar method was 
subsequently employed to magnify the region near corner 0. In this case the 
line x = 8 was first taken as a boundary and a solution obtained with h = & in 
the triangular region bounded by y = 0,  y = x and x = 8, using the h = & 
solution to provide boundary values on x = 4. By following a procedure corre- 
sponding to that outlined for corner A ,  the grid size near corner 0 was eventually 
reduced to h = 1/20971520. 

It is possible that in obtaining these refined solutions a more elaborate way 
of halving the grid size could be adopted using the graded-net technique of Allen 
& Dennis (1951) but this would involve substantial problems of computer storage. 
The above procedure seems adequate for present purposes, and to some extent a 
test of its adequacy lies in the satisfactory comparison found with the asymptotic 
theory of Moffatt ( 1 9 6 4 ~ ) .  Thirteen of the sequence of decaying secondary 
vortices were identified in corner A ,  excluding the primary driving motion of the 
main secondary flow in the tube. Six of the secondary vortices, labelled V,, . . ., V,, 
are shown in figure 2. Figure 2(u) shows the complete upper half of t'he cross- 
section with the streamlines of the main secondary flow in the tube and the 
position of the corner vortex V,. Figures 2 ( b )  and (c) show enlarged regions of the 
neighbourhood of corner A of the cross-section according to the scales indicated. 
Further diagrams could be drawn for the remaining vortices but they would add 
little to figure 2. The vortices clearly tend to become symmetrical about the 
bisector of the angle at A in accordance with theory. The same tendency was 
noted by Pan & Acrivos (1967) in their example. In  corner 0 the secondary 
vortices consist of a sequence of vortex pairs symmetrical about the x axis. Six 
vortex pairs were observed in the calculations. The first four of the sequence in 
the region y > 0 are shown in figure 3 and we shall subsequently refer only to 
vortices in this actual region of computation. Fewer vortices were observed in 
corner 0 of this region than in corner A in the above roughly equivalent numerical 
investigations of each corner. The reason is that the decay of successive vortices 
with regard to both distance from the corner and intensity of Y is much more 
rapid near 0 than near A .  
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In  order to compare some of the details of the vortices with the asymptotic 
theory of Moffatt (1964a)  we shall first take local polar co-ordinates ( r ,  0) with 
origin a t  corner A and the initial line directed along the bisector of the 45" angle 
at A .  Thus the boundaries x = 1 and y = x correspond to 8 = & 22.5", respectively. 
The local solution for the stream function Y will in general consist of a combina- 
tion of terms of the type of the right side of (I) together with an O(r7) term due 
to the WaW/i3y term in (10) and may be written as 

where the A, are a set of eigenvalues and the A,n are constants. The eigenfunctions 
fA,(0) which correspond to the eigenvalues A, are either even or odd functions of 
0 and terms of both types will generally appear in (25 ) .  In  the present case the 
eigenvalues A, are complex with positive real parts, which we assume to be 
ordered so as to increase with increasing n. As r+O the expansion ( 2 5 )  will be 
dominated by the term which corresponds to the eigenvalue A, with the smallest 
real part provided Re A, < 7 ,  and this term will then give the asymptotic nature 
of the flow in the corner. 

The eigenfunctionfh,(8) associated with A, is an even function of 8, which 
gives antisymmetrical flow about 8 = 0. Unless this term is specifically excluded 
from ( 2 5 )  by imposing symmetry of the flow about 8 = 0, it  will dominate Y as 
r -+ 0 if Re A, < 7. It is obvious from figure 2 ( c )  that the flow near A is tending to 
become antisymmetrical about 8 = 0 as r --f 0. For a general angle 2 a  the eigen- 
values A, associated with the terms in (25) giving antisymmetrical flow about 
0 = 0 are (Moffatt 1964a, p. 8) 

A, = 1+(2a) -1 (< ,+ iqn) ,  ( 2 6 )  

127) 

such that ( 2 n - l ) n  < 6, < (2%-if77 (28 )  

where <, and 7, are the roots of the equations 

sin f cosh g = - kt, cos Esinh 7 = - ky 

and with k = (sin 2 a ) / 2 a  in (27 ) .  The particular values of t, and 7, for the case 
2a = 45" have not been given by Moffatt but are easily computed to be 6, = 4.233 
and 7, = 2.137. Hence Re (A,) = 6-39  and vortices will occur in corner A .  Values 
of <, and 7, for the range of corner angles 2 a  given by Moffatt (1964a,  p. 8) have 
been computed rather more accurately and are given in table 1. This table also 
gives values of C2 and 7,, which correspond through (26 )  to the eigenvalue A, 
with the smallest positive real part associated with an eigenfunction which is 
an odd function of 8. In  the case of eigenvalues A, associated with fA,(8) which 
are odd functions of 8 the roots En and 7, satisfy ( 2 7 )  with the minus signs sup- 
pressed and are such that 

(2n-2)7r < En < (2n-$)7r.  (29 )  

Finally, the present estimates of the angles 2a,  and 2cc2 below which the eigen- 
values A, and A,, respectively, are complex are 2a,  = 146.3" and 2a,  = 159.1". 
The latter differs by a few degrees from Moffatt's value 201, = 156". 
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FIGURES 2 (a) and ( b ) .  For legend see facing page. 

In  order to consider the vortices near corner 0 we take local polar co-ordinates 
(r, 0) with origin at  0 and initial line along the + x direction. By symmetry the 
sum in (25) is now composed only of terms associated with odd functions of 0 
and is dominated as r + 0 by the term involving A,. Since cc = p = $TI in this case 
and g2 = 7.553 and vZ = 2.300 from table I ,  Re A, = 5.81 < 7 and t,he observation 
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0.006 
FIGURE 2. Main secondary flow and the corner vort,ices near corner A .  (u)  Main secondary 
flow and the vortex Vl. ( b )  Vortices V,, ..., V,. ( c )  Vortices V,, ..., V,. The value of ?T! a t  the 
centre of each corner vortex is given in table 2. Values of Y‘ are given on the streamlines. 

of vortices in the corner is consistent with theory. We shall now make some brief 
comparisons of calculated properties of the vortices with Moffatt’s theory in both 
corner 0 and corner A .  It is convenient to  consider both cases together, having 
due regard for the significance of the co-ordinates ( r ,  8 )  in each case. The asymp- 
totic expression for Y as r -+ 0 can be written from Moffatt’s theory as 

Y - Re [(B + iC) rAfA(8)],  (30) 
where 

A = A,, fAp) = cos A, 8 cos &(A, - 2) - COS (A, - 2 )  e cos p,n 

near corner A and 

A = A,, fA,(e) = sinA,8sin~(A2-2)n-sin(A,-2)8sin~h,n 

near corner 0. The complex constant B+iC can only be determined from a 
knowledge of the specific flow in the corner or, in principle, from the conditions 
specifying it. 

The centre of a particular vortex may be defined as a point of zero velocity, 
i.e. a local maximum or minimum of Y. For the asymptotic expression (30) the 
centres of the vortices all lie on 8 = 0 for the case A = A,, but for the case A = A, 
it is not in general possible to determine the angle r9 = 0, which the line joining 
the centre of a given vortex to the corner makes with the initial line 8 = 0. In  the 
present case of the flow near corner 0 it will be verified below that 0, tends to 
become constant as r-+ 0 and that this is consistent with (30) for the case A = A,. 
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PICURE 3. Corner vortices in the region 0 > 0 near corner 0. (a )  Vortices S, and 8,. 
( b )  Vortices S, and S,. The value of Y a t  the centre of each corner vortex is given in 
table 3. Values of Y are given on the streamlines. 

We can then obtain two theoretical properties of the centres from (30) to compare 
with the numerical results. Both can be readily obtained from the results given 
by Moffatt (1964a). The first gives the ratio of the positions of the centres of the 
vortices in the form r,lr,+, = e=P (2c47L  (31) 
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2a (deg) El 711 Ez 72 

0 4.212 2.251 7.498 2.769 
10 4.213 2-245 7.498 2.763 
20 4.217 2.229 7.500 2.748 
30 4.222 2.201 7.503 2.721 
40 4.229 2.161 7.508 2-683 
50 4.239 2-109 7.514 2.633 
60 4.251 2.044 7-521 2.572 
70 4.266 1.966 7.530 2.496 
80 4.283 1.870 7.540 2.406 
90 4.303 1.758 7.553 2.300 

100 4.327 1.624 7.567 2.174 
110 4.354 1.463 7.584 2-024 
120 4-386 1-266 7.604 1-846 
130 4.422 1.013 7.627 1-627 
140 4.464 0.639 7-655 1.348 

I - 7.688 0.952 150 
- - 4.493 0~000 2a1 

a 2  - - 7.725 0.000 

TABLE 1. Values of 6% and qn for various corner angles 2a. The critical angles below which 
A, and h2 are complex a m  2al = 146.3' and 2a, = 159*1°, respectively. 

where r, is the distance of the centre of the nth vortex (V, in figure 2 and 8, in 
figure 3) from the respective corner and q = ql when A = A, and q = q2 when 
A = A,. The second gives the ratio 'PJY!rn+l of the stream function at the 
centres of successive vortices. The modulus of the reciprocal of this quantity gives 
a measure of the decay of the absolute intensity of the stream function in the 
successive vortices as the corner is approached. It is easily shown that 

Yrnl"ra+l = - (~n/rn+l)@a+l* 

Jl, = exp [n(E+ 'g)/qI> 

Hence if$!, denotes the modulus of the ratio on the left side, we obtain from (31) 

(32) 

where and q must be taken as the values corresponding to A, and A, in the 
respective cases. 

Moffatt gives a somewhat more realistic measure of the decay of intensity of 
consecutive vortices for the case of antisymmetrical flow about 8 = 0 by cal- 
culating the ratio of the greatest velocity on 8 = 0 for each of two successive 
vortices. However, this property is more difficult to calculate from the present 
numerical solutions and (32) will be used instead. As it  is, we have to find the 
posit'ions of the local maxima and minima of Y by an interpolation procedure. 
The process used for the interpolation is briefly described since it helps to give 
some notion of the accuracy to be expected in the subsequent comparisons. 
Within a given vortex the point observed to have the locally greatest absolute 
value of Y is first located. If this is the point (q,, yo) with an associated value Y o  
we may then approximate Y(x, y) in its neighbourhood in the form 

Y? - To+ a X + b Y + c S 2 + 2 d X Y + e Y 2 +  ..., (33) 
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6 c  (def;) 

3.02 

0-57 
- 0.32 

0.14 
-0.11 
- 0.01 
- 0.04 
- 0.01 
- 0.04 

- 1.17 

rn  

0.11923 + 00 
0.51233 - 01 
0.13623-01 
0.46383 - 02 
0.14053 - 02 
0.45123-03 
0.14083 - 03 
0.44593 - 04 
0'1402E - 04 
0.44223 - 05 

r n h n  +I 

2.327 
3.761 
2.936 
3.300 
3.115 
3.204 
3.157 
3.181 
3.171 
3.175 

Ye 

- 0'4251E - 03 
0.26143 - 05 

- 0 m 9 2 E  - 09 
0.5698E - 12 

- 0.27083 - 15 
0.19303- 18 

- 0.1 126E - 21 
0,72503 - 25 

- 0.44473 - 28 
0.27943 - 31 

M n  

163 
4940 

929 
2104 
1403 
1714 
1553 
1630 
1592 
1611 

TABLE 2. Propertics of the vortices near the 45' corners calculated from the numerical 
solutions. The theoretical limits of rn/rnil and Mn as n -+ co are 3.173 and 1600 re- 
spectively. 

where S = x- xo, Y = y- yo and terms above the second degree in X and Y 
are neglected. We now put aY?/aX = 0 and aY/aY = 0 in (33), which gives two 
linear equations in X and Y whose solution gives an approximation to the 
position of the local maximum or minimum of Y. Substitution of this approxi- 
mation in (33) gives the maximum or minimum Y. The constants in (33) can all 
be expressed in terms of the appropriate derivatives of Y at (xo, yo) and these 
in turn may be approximated by central-difference formulae in terms of Yo and 
the values of Y at the eight points of the grid on the square surrounding (xo, go). 
Thus, for example, 

2a = (a2y/axay)o N (y5 - Y~ + Y, - Y~) /W 

in terms of the Southwell notation, and the formulae for the other derivatives 
involved are quite well known. 

The results of the calculations for corner A are shown in table 2 .  Details are 
given for only ten of the vortices since, although thirteen were observed, the 
amount of numerical detail becomes less as the corner is approached. Two of the 
columns of figures give the estimated polar co-ordinates of the centres relative 
to A with the internal bisector of the angle a t  A as the initial line 0 = 0. Two 
further columns give numerical estimates which can be compared with the 
theoretical estimates as r-+ 0 given by (31) and (32). The floating-point notation 
for decimal numbers is used where it is more convenient to do so. The theoretical 
estimate of the limit of rn/r,+, given by (31) is easily calculated to be 
r,/rn+, = 3.173 and the theoretical result for M, from (32) is Mn = 1600. Within 
the limits of numerical error, therefore, and bearing particularly in mind that 
all the results quoted in table 2 were obtained by interpolation, the agreement 
with the asymptotic theory is good. It is true that the tendency O,-+ 0 as r -+ 0 is 
not exceptionally well delineated by the results on a fine scale, but even so the 
results are satisfactory enough, measured as a percentage of the 45" corner angle. 

The corresponding results for four of the computed vortices in the region 
8 > 0 near corner 0 are shown in table 3. Here the scale of decay of the vortices 



Viscous eddies near a corner 431 

Vortex n 0, (deg) r n  rn/Tn +I y r n  M, x 10-5 

81 1 25.76 0'1908E - 01 7.209 - 0.32193 - 06 0 954 

8 3  3 
8 4  4 

8 2  2 24.74 0.2646E - 02 8.813 0.3376E - 11 3.069 
24.94 0.3002E - 0 3  8.519 -0.1100E- 16 2.529 
24.91 0.3524.E - 04 8.547 0.43493 - 22 2.592 

TABLE 3. Properties of the symmetrical vortex pairs near the 90" corner calculated from 
the numerical solutions. The theoretical limits of rn/rn+l and Mn x as n + co are 
8-547 and 2.584 respectively. 

as T +  0 is very much greater and the theoretical limits obtained from (31) and 
(38) correspond to r,/r,+, = 8.547 andM, x = 2.584, which show good agree- 
ment with the numerical results. The angle 8, appears to have approached close 
to a limit by the time the fourth vortex is reached and this was checked with 
Moffatt's theory in the following way. The expression (30) for Y was evaluated 
by using the known real and imaginary parts of fAB(,,(e) when h = A, and the 
constants B and C found by fitting the resulting expression to the computed Y 
in the fifth of the observed vortices. This was done for a range of values of 8, each 
time finding A and B by fitting (30) to values of Y a t  two distinct values of r 
sufficiently far from the corner for the computed solution to be accurate. The 
result of the many fits was to give the same consistent values B = - 2602 and 
C = - 6837 and the expression (30) was then found to agree with the computed 
Y in the fifth vortex everywhere except very close to the corner. The expression 
(30) was then used to calculate the theoretical positions of the centres of the 
sixth and a number of subsequent vortices and these were a11 found to yield 
8, = 24.916". These combined tests of the theory would seem to give an adequate 
check in the present case and presumably other properties could be checked 
satisfactorily. 

The present work arose in an investigation of flow through a curved tube of 
triangular cross-section which was stimulated by a theoretical paper by Dr F. T. 
Smith (1976) and by discussions with Professor N. Riley. The authors are greatly 
indebted to comment,s by a referee on a previous version of this paper. The 
investigation has been supported by a grant from the National Research Council 
of Canada. 
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